Алгоритмы, структуры данных




Модели с фиксированным контекстом. - часть 2


Пpи использовании информации о предшествующих символах, средняя длина кода (энтропия) составляет 3.6 бита/символ по сравнению с 4.5 бита/символ в простых моделях.

Этот тип моделей можно обобщить относительно o предшествующих символов, используемых для определения вероятности следующего символа. Это опpеделяет контекстно-огpаниченную модель степени o. Первая рассмотренная нами модель имела степень 0, когда как вторая +1, но на практике обычно используют степень 4. Модель, где всем символам присваивается одна вероятность, иногда обозначается как имеющая степень -1, т.е. более примитивная, чем модель степени 0.

Контекстно-ограниченные модели неизменно применяются адаптивно, поскольку они обладают возможностью приспосабливаться к особенностям сжимаемого текста. Оценки вероятности в этом случае представляют собой просто счетчики частот, формируемые на основе уже просмотренного текста.

Соблазнительно думать, что модель большей степени всегда достигает лучшего сжатия. Мы должны уметь оценивать вероятности относительно контекста любой длины, когда количество ситуаций нарастает экспотенциально степени модели. Т.о. для обработки больших образцов текста требуется много памяти. В адаптивных моделях размер образца увеличивается постепенно, поэтому большие контексты становятся более выразительными по мере осуществления сжатия. Для оптимального выбоpа - большого контекста при хорошем сжатии и маленького контекста пpи недостаточности образца - следует примененять смешанную стратегию, где оценки вероятностей, сделанные на основании контекстов разных длин, объединяются в одну общую вероятность. Существует несколько способов выполнять перемешивание. Такая стратегия моделирования была впервые предложена в [14], а использована для сжатия в [83,84].




Содержание  Назад  Вперед